$$ 2x^7-14x^5+20x^3=0 $$
$$ 2x^3\left(x^4-7x^2+10\right) $$
Betrachte x^4-7x^2+10:
Substitutiere: u = x^2
$$ u^2-7u+10 $$
$$ \left(u^2-2u\right)+\left(-5u+10\right) $$
$$ u\left(u-2\right)-5\left(u-2\right) $$
$$ \left(u-2\right)\left(u-5\right) $$
Rücksubstitution: u = x^2
$$ \left(x^2-2\right)\left(x^2-5\right) $$
$$ 2x^3 \left(x^2-2\right)\left(x^2-5\right) $$
Nun kannst du die Nullstellen ablesen und so umschreiben:
$$ 2x^3\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right) $$
$$ x=0,\:x=-\sqrt{2},\:x=\sqrt{2},\:x=-\sqrt{5},\:x=\sqrt{5} $$