\(\vec{a}\) = \( \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}\) , \(\vec{b}\) = \( \begin{pmatrix} x \\ y \\ z \end{pmatrix}\) , A = \(\begin{pmatrix} a&x\\ 0&y\\0&z\end{pmatrix}\) , AT = \(\begin{pmatrix} a&0&0\\ x&y&z\end{pmatrix}\)
Gramsche Determinante = det(AT • A) = det( \(\begin{pmatrix} a&0&0\\ x&y&z\end{pmatrix}\) • \(\begin{pmatrix} a&x\\ 0&y\\0&z\end{pmatrix}\) )
= det( \(\begin{pmatrix} a^2&ax\\ ax&x^2+y^2+z^2\end{pmatrix}\) = a2 • (y2 + z2)
\( \begin{pmatrix} a \\ 0\\ 0 \end{pmatrix}\) x \( \begin{pmatrix} x \\ y \\ z \end{pmatrix}\) = \( \begin{pmatrix} 0 \\ -az \\ ay \end{pmatrix}\)
|| \( \begin{pmatrix} 0 \\ -az \\ ay \end{pmatrix}\)|| 2 = ( √ (a2z2 + a2y2 )2 = a2z2 + a2y2 = a2 • (y2 + z2)
Gruß Wolfgang