(a) Für jedes \( n \in \mathbb{N} \) definieren wir die folgende Matrix:
\( A_{n}=\left(\begin{array}{cccccc} 1 & 2 & 3 & \ldots & n-1 & n \\ 1 & 2 & 3 & \ldots & n-1 & 0 \\ 1 & 2 & 3 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & 3 & \ldots & 0 & 0 \\ 1 & 2 & 0 & \ldots & 0 & 0 \\ 1 & 0 & 0 & \ldots & 0 & 0 \end{array}\right) . \)
Es gilt also \( A_{1}=(1), A_{2}=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right), A_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 0 \\ 1 & 0 & 0\end{array}\right) \) und \( A_{4}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \).
Berechnen Sie \( \operatorname{det} A_{n} \) für \( n=1,2,3,4 \).
(b) Geben Sie eine explizite Formel für \( \operatorname{det} A_{n} \) mit \( n \in \mathbb{N} \) an und beweisen Sie diese.