k2 • x3 + 6k • x2 + 9x = 0
k2 • x ausklammern:
k2 • x • ( x2 + 6/k + 9/k2 • x ) = 0
Nullproduktsatz → x = 0 oder x2 + 6/k • x + 9/k2 = 0
x2 + 6/k • x + 9/k = 0
x2 + px + q = 0
pq-Formel: p = 6/k ; q = 9/k2
x1,2 = - p/2 ± \(\sqrt{(p/2)^2 - q}\)
x1,2 = - 3/k ± \(\sqrt[]{9/k^2 - 9/k^2}\)
x1,2 = - 3/k (dopppelte Nullstelle)
L = { 0 ; - 3/k }
Gruß Wolfgang