\( f(x)=a · x^{r} \)
\( p\left(2 \mid \frac{8}{3}\right): \quad I: ~ \frac{8}{3}=a \cdot 2^{r} \)
\( \underline{ q\left(3 \mid 9\right): \quad II: ~ 9=a \cdot 3^{r} } \)
I geteilt durch II:
\( \frac{8}{27}=\frac{2^r}{3^{r}}=\left(\frac{2}{3}\right)^{r} \)
\( \frac{2^{3}}{3^{3}}=\left(\frac{2}{3}\right)^{r} \)
\( \left(\frac{2}{3}\right)^{3}=\left(\frac{2}{3}\right)^{r} \)
\( \rightarrow \) Exponentenvergleich: \( r = 3 \)
\( \rightarrow \quad 9=a \cdot 3^{3} \)
\( 9=a \cdot 27 \rightarrow a=\frac{9}{27} \)
\( a=\frac{1}{3} \)