f(x) = ax4 + bx3 + cx2 + dx + e
f '(x) = 4ax3 + 3bx2 ++ 2cx + d
f(0) = 0 → e = 0
f '(0) = 0 → d = 0
f(x) = ax4 + bx3 + cx2
f(-2) = 0 → 16·a - 8·b + 4·c = 0
f(1) = 0 → a + b + c = 0
f(2) = 3 → 16·a + 8·b + 4·c = 3
Die Lösung des LGS ist a = 3/16 ∧ b = 3/16 ∧ c = - 3/8
f(x) = 3/16 x4 + 3/16 x3 - 3/8 x2
Gruß Wolfgang