lg( x - 1 ) = lg( 2x + 1) + lg( x - 2 ) - lg( x + 2 )
lg( x - 1 ) = lg(( 2x + 1) *( x - 2 ))- lg( x + 2 )
lg( x - 1 ) = lg(( 2x + 1) *( x - 2 )/(x+2)) | 10 hoch
x - 1 =( (2x + 1) *( x - 2 ))/(x+2)
(x - 1 )(x+2) = (2x + 1) *( x - 2 )
x^2 +x -2= 2 x^2 -3x-2
x^2 +x = 2 x^2 -3x
x^2 =2 x^2-4x
-x^2=-4x
x^2=4x
x^2 -4x =0
x(x-4)=0
x_1=0
x_2=4
Die Probe hat ergeben, das nur 4 die Lösung ist.