g(x) = m·(x + 1) + 1 = m·x + m + 1
f(x) = 0.5·x^2
d(x) = f(x) - g(x) = 0.5·x^2 - (m·x + m + 1) = 0.5·x^2 - m·x - m - 1
Schnittstellen d(x) = 0
0.5·x^2 - m·x - m - 1 = 0 --> x = m ± √(m^2 + 2·m + 2)
A = ∫(0.5·x^2 - m·x - m - 1, x, m - √(m^2 + 2·m + 2), m + √(m^2 + 2·m + 2)) = - 2·(m^2 + 2·m + 2)^{3/2}/3
A' = - 2·(m + 1)·√(m^2 + 2·m + 2) = 0 --> m = - 1
A = - 2·((-1)^2 + 2·(-1) + 2)^{3/2}/3 = - 2/3 --> Die Fläche beträgt minimal 2/3 FE.
Skizze:
~plot~ 0.5x^2;-x ~plot~