g(x) = m·(x + 1) + 1 = m·x + m + 1
f(x) = 0.5·x2
d(x) = f(x) - g(x) = 0.5·x2 - (m·x + m + 1) = 0.5·x2 - m·x - m - 1
Schnittstellen d(x) = 0
0.5·x2 - m·x - m - 1 = 0 --> x = m ± √(m2 + 2·m + 2)
A = ∫(0.5·x2 - m·x - m - 1, x, m - √(m2 + 2·m + 2), m + √(m2 + 2·m + 2)) = - 2·(m2 + 2·m + 2)3/2/3
A' = - 2·(m + 1)·√(m2 + 2·m + 2) = 0 --> m = - 1
A = - 2·((-1)2 + 2·(-1) + 2)3/2/3 = - 2/3 --> Die Fläche beträgt minimal 2/3 FE.
Skizze:
Plotlux öffnen f1(x) = 0,5x2f2(x) = -x