y(x) = cos(x) + 1
y'(x) = - sin(x)
Einsetzen in die Differentialgleichung
y' = y^2 - 2y + sin(x) * (sin(x) - 1)
- sin(x) = (cos(x) + 1)^2 - 2(cos(x) + 1) + sin(x) * (sin(x) - 1)
- SIN(x) = COS(x)^2 + 2·COS(x) + 1 - 2·COS(x) - 2 + SIN(x)^2 - SIN(x)
0 = 0 --> stimmt
Anfangsbedingung:
y(0) = cos(0) + 1 = 2 --> stimmt auch