f(x) = x^2 - 3·x + 3
f'(x) = 2·x - 3
Es gilt:
(f(x) - (-3)) / (x - (2)) = f'(x) --> x = 4 ∨ x = 0
Also die Tangenten
t1(x) = f'(4) * (x - 4) + f(4) = 5·x - 13
t2(x) = f'(0) * (x - 0) + f(0) = 3 - 3·x
Skizze
~plot~ x^2-3x+3;5x-13;3-3x;{2|-3};[[-3|6|-4|14]] ~plot~