\(f(x) = 3x^2 + 4x + a-10\)
\(3x^2 + 4x + a-10=0\)
Lösungen ohne pq und abc - Formel:
\(3x^2 + 4x =10-a|:3\)
\(x^2 + \frac{4}{3}x =\frac{10-a}{3}\)
\(x^2 + \frac{4}{3}x +(\frac{2}{3})^2=\frac{10-a}{3}+(\frac{2}{3})^2\)
\((x +\frac{2}{3})^2=\frac{34-3a}{9} |±\sqrt{~~}\)
1.)
\(x +\frac{2}{3}=\frac{1}{3}\sqrt{34-3a}\)
\(x_1 =-\frac{2}{3}+\frac{1}{3}\sqrt{34-3a}\)
2.)
\(x +\frac{2}{3}=-\frac{1}{3}\sqrt{34-3a}\)
\(x_2 =-\frac{2}{3}-\frac{1}{3}\sqrt{34-3a}\)
Diskriminante (D):
1.Fall: \(D>0\)
\(34-3a>0|+3a\)
\(34>3a\)→ \(3a<34\) → \(a<\frac{34}{3}\) 2 Lösungen
2.Fall: \(D=0\)
\(34-3a=0\)
\(a=\frac{34}{3}\) 1 Lösung
3.Fall: \(D<0\) keine Lösung in ℝ