T(t) = a*e^{-kt} + b
T(0.5) = a*e^{-0.5k} + b = 86
T(4) = a*e^{-4k} + b = 68.5
T(7.5) = a*e^{-7.5k} + b = 55.5
II - I, III - II
a·e^{-0.5·k} - a·e^{-4·k} = 17.5
a·e^{-7.5·k} - a·e^{-4·k} = -13
I : II
(a·e^{-0.5·k} - a·e^{-4·k}) / (a·e^{-7.5·k} - a·e^{-4·k}) = 17.5/-13
(e^{15·k/2} - e^{11·k})/(e^{15·k/2} - e^{4·k}) = - 35/26
e^{15·k/2} - e^{11·k} = - 35/26·(e^{15·k/2} - e^{4·k})
26·e^{7.5·k} - 26·e^{11·k} = 35·e^{4·k} - 35·e^{7.5·k}
61·e^{7.5·k} - 26·e^{11·k} - 35·e^{4·k} = 0
e^{4·k}·(61·e^{3.5·k} - 26·e^{7·k} - 35) = 0
61·e^{3.5·k} - 26·e^{7·k} - 35 = 0
z = e^{3.5·k}
61·z - 26·z^2 - 35 = 0
z = 35/26 ∨ z = 1
k = ln(z) / 3.5
k = 0.08492900670
k = 0
Jetzt rückwärts einsetzen
a·e^{-0.5·0.08492900670} - a·e^{-4·0.08492900670} = 17.5
a = 71.00773880
71.00773880*e^{-0.5*0.08492900670} + b = 86
b = 17.94444444
T(t) = 71.0077388·e^{- 0.0849290067·t} + 17.94444444
Das ist die gesuchte Funktion.