Bestimmen Sie für jedes \( { y }_{ 0 }∈ ℝ \) die Lösung der Anfangswertaufgabe $$ y'=\frac { 1 }{ 2 }{ y }^{ 3 }sin(x),\quad\quad y(0)={ y }_{ 0 }. $$ Geben Sie dabei jeweils auch den maximalen Definitionsbereich an.
Lösung:
$$ \frac { dy }{ dx }=\frac { 1 }{ 2 }{ y }^{ 3 }sin(x) $$
$$ \frac { dy }{ { y }^{ 3 } }=\frac { 1 }{ 2 }sin(x)\quad dx =>$$
$$ \int_{{ y }_{ 0 }}^{{ y }_{ 1 }}\frac { 1 }{ { y }^{ 3 } }=\int_{ 0 }^{{ x }_{ 1 }}\frac { 1 }{ 2 }sin(x)\quad $$
$$ { \left[ \ln { ({ y }_{ 1 }^{ 3 } } ) \right] }_{ { y }_{ 0 } }^{ { y }_{ 1 } }\quad =\quad { \left[ -\frac { cos(x) }{ 2 } \right] }_{ 0 }^{ x_{ 1 } } $$
$$ \ln { ({ y }_{ 1 }^{ 3 } } )-\ln { ({ y }_{ 0 }^{ 3 } } )\quad =\quad -\frac { 1 }{ 2 } \cos { { (x }_{ 1 }) } -(-\frac { 1 }{ 2 } \cos { (0) } ) $$
$$ \ln { ({ y }_{ 1 }^{ 3 } } )= -\frac { 1 }{ 2 } \cos { { (x }_{ 1 }) } +\frac { 1 }{ 2 } +\ln { ({ y }_{ 0 }^{ 3 } } ) $$
$$ 3\ln { ({ y }_{ 1 } } )= -\frac { 1 }{ 2 } \cos { { (x }_{ 1 }) } +\frac { 1 }{ 2 } +\ln { ({ y }_{ 0 }^{ 3 } } ) $$
$$ \ln { ({ y }_{ 1 } } )= -\frac { 1 }{ 6 } \cos { { (x }_{ 1 }) } +\frac { 1 }{ 6 } +\frac { \ln { ({ y }_{ 0 }^{ 3 } } ) }{ 3 } $$
$$ \ln { ({ y }_{ 1 } } )= -\frac { 1 }{ 6 } \cos { { (x }_{ 1 }) } +\frac { 1 }{ 6 } +\frac { 3\ln { ({ y }_{ 0 } } ) }{ 3 } $$
$$ \ln { ({ y }_{ 1 } } )= -\frac { 1 }{ 6 } \cos { { (x }_{ 1 }) } +\frac { 1 }{ 6 } +\ln { ({ y }_{ 0 } } ) $$
$$ { y }_{ 1 }\quad=\quad { e }^{ -\frac { 1 }{ 6 } \cos { { (x }_{ 1 }) } }+{ e }^{ \frac { 1 }{ 6 } }+{ y }_{ 0 } $$
Ist meine Rechnung soweit in Ordnung? Was fehlt genau?