Hallo Helena,
du musst die Funktionsterme gleich 0 setzen. Dann kannst du den Satz vom Nullprodukt anwenden.
1.
(x+3)(x-5)(x+7)2 = 0   ;    x1 = -3  ;  x2 = 5  ;  x3 = - 7
2. 
(x-1)(x2+2x-8) = 0   ⇔  x - 1 = 0  oder x2 + 2x - 8 = 0
x1 = 1
x2 + 2x - 8 = 0   ⇔  (x-2) * (x+4) = 0 ;  x2 = 2 ; x3 = -4 
Oder:
x2 + px + q = 0
pq-Formel:  p = 2  ; q = - 8
x2,3 = - p/2 ± \(\sqrt{(p/2)^2 - q}\)
x2,3 = - 1 ± \(\sqrt{1 + 8 }\) =  - 1 ± \(\sqrt{9 }\) = -1 ± 3 ;  x2 = 2 ; x3 = -4 
3.  
x3-41x2+400x  = 0 ⇔  x * (x2-41x +400) = 0
x1 = 0
x2 - 41x + 400 = 0
pq-Formel:  p = - 41  ; q = 400
x2,3 = -41/2 ± \(\sqrt{1681/4 - 1600/4}\) = x2,3 = -41/2 ± \(\sqrt{(81/4}\) =  41/2 ± 9/2 
x2 = 32/2 = 16  ;  x3 = 50/2 = 25 
Gruß Wolfgan