x·[x + 1, 5, -1] = x·[1, 2, -2] - 3·[3, 3, 1] + [6·x, 18, 2·x]
[x^2 + x, 5·x, - x] = [x, 2·x, -2·x] - [9, 9, 3] + [6·x, 18, 2·x]
[x^2 + x, 5·x, - x] = [7·x - 9, 2·x + 9, - 3]
Letzte Gleichung
-x = -3 --> x = 1
Das prüfen wir durch einsetzen
[1^2 + 1, 5·1, - 1] = [7·1 - 9, 2·1 + 9, - 3]
[2, 5, -1] = [-2, 11, -3]
Damit existiert keine Lösung