$$(a+b)^2=a^2+2ab+b^2$$Also mit was ist (10-4 x/2*pi)^2 gleich?
100^2-80x+16x^2 müsste im Zähler stehen, aber was ist mit dem Nenner?
Wie haben folgendes:
$$\pi \left(10-4\frac{x}{2}\pi\right)^2+x^2=\pi \left(100-80\frac{x}{2}\pi+16\frac{x^2}{4}\pi^2 \right)+x^2 \\ =\pi \left(100-40x\pi+4x^2\pi^2 \right)+x^2=100\pi -40x\pi^2+4x^2\pi^3 +x^2$$
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos