mit x = ( x1,x2,...,xn ) und y entsprechend gilt
1/4 ( || x+y ||2 - ||x-y||2 )
= 1/4 ( ( x1+y1)2 + (x2+y2)2 + ... (xn +yn)2 - ( ( x1+y1)2 + (x2+y2)2 + ... (xn +yn)2 ) )
= 1/4 ( x12 + 2x1y1 +y12 + ..........+xn2 +2xnyn +yn2 -
( x12 - 2x1y1 +y12 + ..........+xn2 -2xnyn +yn2 )
=1/4 ( 2x1y1 + ..........+ 2xnyn + 2x1y1 + ..........+2xnyn )
=1/4 ( 4x1y1 + ..........+ 4xnyn )
= x1y1 + ..........+ xnyn
= < x,y >