p(x) = TAN(α)·x - g/(2·v^2·COS(α))·x^2
Nullstellen p(x) = 0
TAN(α)·x - g/(2·v^2·COS(α))·x^2 = x·(TAN(α) - g/(2·v^2·COS(α))·x)
x = 0 und
TAN(α) - g/(2·v^2·COS(α))·x = 0
TAN(α) = g/(2·v^2·COS(α))·x
2·v^2·COS(α)·TAN(α)/g = x
x = 2·v^2·SIN(α)/g
Maximale Höhe
x = (0 + 2·v^2·SIN(α)/g)/2 = v^2·SIN(α)/g
p(v^2·SIN(α)/g) = v^2·SIN(α)^2 / (2·g·COS(α))