Sei (an) eine Folge mit an≠0 für alle n∈ℕ. Beweisen Sie folgende AussageGilt $$ \left| \frac { { a }_{ n+1 } }{ { a }_{ n } } \right| \le 1-\frac { 2 }{ n } $$ für fast alle n∈ℕ, so ist die Reihe ∑∞n=1 an absolut konvergent.Hinweis: Betrachten Sie die Folge (cn)n∈ℕ mit c1 := 1 und cn+1 := 1/n2 für alle n≥1.