hallo zusammen,
könnte mir jemand (bitte vollständig) an dem Beispiel dieser Übung zeigen? Bitte auch um Literaturvorschlag.
$$Seider\quad ℝ-Vektorraum\quad { P }_{ 2 }(ℝ)\quad der\quad Polynome\quad mit\quad Koeffinzienten\quad in\quad ℝ\quad wie\quad folgt\quad definiert:\\ { P }_{ 2 }(ℝ):=\left\{ p(x)={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }\quad mit\quad { a }_{ 0 },{ a }_{ 1 },{ a }_{ 2 }∈ℝ \right\} \\ 1)\quad Stellen\quad Sie\quad die\quad Elemente\quad der\quad Standardbasis\quad { B }_{ 0 }:=\left\{ 1,\quad x,{ \quad x }^{ 2 } \right\} bezüglich\quad der\quad Basis\quad B\quad dar,\\ d.h.\quad finden\quad Sie\quad jeweils\quad Linearkombinationen,\quad sodass\quad bspw.\quad { x }^{ 2 }=λ_{ 1 }·1+λ_{ 2 }·(x+2)+λ_{ 3 }·{ (x+2) }^{ 2 }\quad gilt.\\ 2)\quad Geben\quad Sie\quad eine\quad Darstellung\quad von\quad p(x):={ (x−2) }^{ 2 }\quad bezüglich\quad B\quad an.\quad (Nutzen\quad Sie\quad 1)!)$$