Grenzwert dieser beiden Gleichungen muss bestimmt werden.
(2n^2 + 3n − 1) : (n^2 + 5n − 5)
und von
(n+2/n)^{3n-1}
(2n2 + 3n − 1) : (n2 + 5n − 5)Zähler und Nenner durch n2 teilen (Das nennt man auch Kürzen). Dann erhält man (2+3/n-1/n2)/(1+5/n-5/n2). Darin gehen 3/n, 1/n2, 5/n und 5/n2 gegen Null, wenn n gegen unendlich geht. Bleibt als 2/1 = 2 als Grenzwert..
Hier ist ein Lösungsvorschlag
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos