versuche den Text sukzessiv in Formeln zu überführen. Etwa in der Art:
"Die Firma kalkuliert, dass sie bei einem Verkaufspreis p etwa N (p) = 250.000/p -10.000 Mengeneinheiten verkauft wird." Die Formel kannst Du direkt übernehmen $$N(p)=\frac{250.000}{p}-10.000$$ Wichtig dabei ist: der Preis, also das Geld was die Firma für jeden Stick erhält ist \(p\) und die Anzahl der verkauften Sticks ist \(N(p)\).
"Die Einnahme der Firma ...$$E= ...$$ ... ist das Produkt aus dem Verkaufspreis p ... $$E= p \cdot ...$$ ... und der verkauften Menge N (p)." $$E= p \cdot N(p)$$ "Der Gewinn der Firma ... $$G= ...$$ ... ist die Differenz aus der Einnahme ... $$G=E - ...$$ ... und den Kosten der Herstellung" $$G=E- N(p)\cdot 4$$ da jeder Stick in der Herstellung 4EUR kostet.
Der Gewinn \(G\) soll maximiert werden. Dazu setze ich in die Formel für \(G\) die bekannten Größen ein $$G=E-N(p) \cdot 4=p \cdot N(p) - N(p) \cdot 4\\=250.000 - 10.000p - 4(\frac{250.000}{p}-10.000)\\=290.000 - 10.000p - \frac{1.000.000}{p}$$ und leite nach \(p\) ab $$\frac{\delta G}{\delta p}=-10.000 + \frac{1.000.000}{p^2}$$ Nach Nullsetzen der Gleichung erhält man $$p_{1,2}=\pm10$$ Der negative Wert macht keinen Sinn. Der optimale Verkaufspreis liegt demnach bei \(p=\)10EUR.
Gruß Werner