CarpeDiem,
bei der Lösung dieser Aufgabe kommt es besonders darauf an, was ihr bereits in der Vorlesung hattet und was nicht. Ich kann mir nicht vorstellen, dass ihr den Laplaceschen Entwicklungssatz zeigen sollt, weil das eigentlich Aufgabe für die Vorlesung ist (oder für ein Tutorium, wie es mal gehandhabt habe). Ich gehe davon aus, dass ihr den verwenden dürft, da sonst das Berechnen der Determinanten von Matrizen höherer Ordnung ziemlich schwierig wird. Wichtig bei diesem Satz ist die Formel, die gleichzeitig die (rekursive) Berechnungsvorschrift angibt:
Was steht da nun? i und j sind die Indizes zur Adressierung der Zeilen (i) und Spalten (j) in der Matrix. Orange gibt das Vorzeichen der Elemente in der Matrix an. Um das entsprechende Vorzeichen in der Matrix zu erhalten, addierst Du lediglich i und j. In einer 3x3-Matrix sähe das so aus:
Grün ist der Vorfaktor in der Zeile, nach der Du entwickelst. Das ist der Matrizeneintrag an der Stelle (i,j). Der violette Bestandteil ist die Determinante der "Streichmatrix". Was ist aber die Streichmatrix? Nun, das ist Matrix, die entsteht, wenn Du von dem Element $$a_{i,j}$$ ausgehend die i-te Zeile und j-te Spalte der Matrix streichst.
Beispiel:
Du musst dieses Verfahren für jede Spalte (wenn Du nach einer Zeile entwickelst) oder für jede Spalte (wenn Du nach einer Zeile entwickelst) durchführen, also bis n. Zur Berechnung der Determinante der Streichmatrix verwendest Du dann wieder dieses Prinzip (Rekursion). Mit diesem Wissen ausgestattet ist die obige Aufgabe ziemlich leicht. Wenn Du die Determinante nämlich nach der ersten Zeile entwickelst, dann gilt:
Das Vorzeichen ist positiv, weil Du mit dem Element in der ersten Spalte und ersten Zeile beginnst, also $$(-1)^{1+1}=1$$ Der Vorfaktor ist b und die Streichmatrix ist der lila eingerahmte Matrizenausschnitt. Du erhältst dadurch die rechte Seite Deiner Gleichung. Warum bist Du an dieser Stelle bereits fertig? Ganz einfach: die Vorfaktoren im Rest der Zeile sind alle 0, d.h. selbst wenn Du für jedes Zeilenelement Vorzeichen, Streichmatrix etc. bestimmst, hat das auf das Ergebnis keinen Einfluss.
Konnte ich Dir weiterhelfen?
Weiterhin viel Erfolg im Studium und beste Grüße!
André, savest8