Weg ohne p,q, Formel mit quadratischer Ergänzung:
\(t^2 - \frac{28}{3} t + 16a^2 = 0 |-16a^2 \)
\(t^2 - \frac{28}{3} t =-16a^2 \)
\((t - \frac{14}{3} )^2 =-16a^2+(\frac{14}{3} )^2=\frac{196-144a^2}{9} |\sqrt{~~} \)
\(1.)\)
\(t - \frac{14}{3} =\frac{1}{3}*\sqrt{196-144a^2} \)
\(t_1 =\frac{14}{3}+\frac{1}{3}*\sqrt{196-144a^2} \)
\(2.)\)
\(t - \frac{14}{3} =-\frac{1}{3}*\sqrt{196-144a^2} \)
\(t_2 =\frac{14}{3}-\frac{1}{3}*\sqrt{196-144a^2} \)