Induktionsanfang: n = 1
1·1! = (1 + 1)! - 1
1 = 1
stimmt
Induktionsschritt: n --> n + 1
1·1! + 2·2! + 3·3! + ... + n·n! + (n + 1)·(n + 1)! = ((n + 1) + 1)! - 1
(n + 1)! - 1 + (n + 1)·(n + 1)! = (n + 2)! - 1
(n + 1)! + (n + 1)·(n + 1)! = (n + 2)!
(n + 1)!·(1 + (n + 1)) = (n + 2)!
(n + 1)!·(n + 2) = (n + 2)!
(n + 2)! = (n + 2)!
stimmt