0 Daumen
1,8k Aufrufe

Ich habe eine Frage zu dieser Fragestellung : 

Vier Schüler arbeiten paarweise zusammen. Wie viele unterschiedliche Paare sind möglich ? 

Ich weiß, dass würde mit ein bisschen abzählen gehen, aber mir geht es um die Formel : 

n!/k!(k-n)!

Würde diese hier funktionieren ? 

Als Lösung habe ich 6 Kombinationen 

LG

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Vier Schüler arbeiten paarweise zusammen. Wie viele unterschiedliche Paare sind möglich ? 

Die unterschiedlichen Paare kannst du als zweielementige Teilmengen einer vierelementigen Menge betrachten. 

Und da passt dann genau der Binomialkoeffizient ( 4 tief 2) = 4!/(2! *(4-2)!) .

Also für deine Formel : n=4 und k = 2. 

Avatar von 162 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community