:-)
1) OK
2) (5/4)^{1/5} = (4/4+1/4)^{1/5} = (1+1/4)^{1/5} d.h. setze x=1/4 in die Taylor-Formel ein:
1 + 1/5×1/4 - 2/25×(1/4)^2 + 6/125×(1/4)^3 - 21/625×(1/4)^4 = 1,04561875
Restgliedabschätzung nach Lagrange:
Ist |f^{n+1}(x)| ≤ K dann folgt |R_n,a(x)| <= K/(n+1)! * |x-a|^{n+1}
wobei a der Entwicklungspunkt ist.
f^5(0) = 9576/(3125*(1)^{24/5}) = 3,06432 = K
|R_n,a(1/4)| <= 3,06432/(4+1)! * |1/4-0|^{4+1} = 0.0000249375
Der maximale Fehler ist <= 0.0000249375
Kontrolle: (5/4)^{1/5} - 1,04561875 = 0,0000208025 < 0.0000249375 -> OK