y_p:
_______________________________
y = cx^3e^{-x} + ax + b
y' = e^{-x} [ae^x -cx^3 +3cx^2]
y'' = e^{-x} [x^2-6x+6] cx
y'''= -c e^{-x} [x^3-9x^2+18x-6]
____________
y'''+3y''+3y'+y=x+6e^{-x}
x+6e^{-x} =e^{-x} [-c(x^3-9x^2+18x-6)] + e^{-x} [3cx(x^2-6x+6)] + e^{-x} [3(ae^x -cx^3 +3cx^2)] +
e^{-x} [cx^3] + ax + b
= ax + b + e^{-x}[-c(x^3-9x^2+18x-6)+3cx(x^2-6x+6)+3(ae^x -cx^3 +3cx^2)+cx^3]
= ax + b + e^{-x}[3(a*e^{x}+2c)]
= ax + 3a + b + 6ce^{-x}
=> c = 1
a = 1
3a+b = 0 => b = -3
y_p = cx^3 e^{-x} + ax + b
= x^3 e^{-x} + x -3
_______________________________
y = y_h + y_p =
(ax2+bx+c) e^{-x} + x^3e^{-x} + x -3 =
e^{-x} [ax2+bx+c + x^3
] + x -3 =
e^{-x} [x^3+
ax2+bx+c] + x -3
___sieht das alles so richtig aus?
MFG