ich soll die Funktion f(x,y)=6x^2+3y^2-6xy+15x-9y+1 für
a) 2x+y<=4
b) 2x+y>=4
minimieren.
Den Fall a) konnte ich lösen, da der Gradient eine Nullstelle im Definitionsbereich hat und die Funktion bei (-1,0.5) ein lokales Minimum (welches auch das globale Minimum ist) annimmt.
Bei Fall b) komme ich nicht weiter. Ich habe versucht die Funktion h(x,y) := f(x+2,y) unter der Bedingung 2x+y >= 0 zu minimieren. Dazu habe ich h in Polarkoordinaten transformiert und den Winkel als den Winkel zwischen der Ebene y=0 und 2x+y=0 festgesetzt, um das Minimum der Schnittparabel zu berechnen (dieses sollte ja auch das Minimum der Funktion im Definitionsbereich sein?). Da kommen allerdings sehr unschöne Ergebnisse bei raus ^^ Stimmt dieser Ansatz überhaupt soweit?
Über Tipps und Ratschläge wäre ich sehr dankbar.
Gruß