0 Daumen
581 Aufrufe

Aufgabe:

$$ \text { Sei } f ( x , y ) : = \frac { x y ^ { 2 } } { x ^ { 2 } + y ^ { 4 } } \quad \text { für } ( x , y ) \neq ( 0,0 ) , f ( 0,0 ) : = 0 $$

a) f ist im Nullpunkt längs jeder Geraden y = ax stetig, das heißt: Aus \( x_n → 0 \) folgt \( f \left( x _ { n } , a x _ { n } \right) \rightarrow f ( 0,0 ) = 0 \)
b) i ist im Nullpunkt unstetig; \( \lim \limits _ { x , y \rightarrow 0 } f ( x , y ) \) existiert nicht.

Kann bei dieser Aufgabe jemand helfen?

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community