2·(y - 1)·y' = x^3 + 4·x^2 + 2 ; y(0) = -1
(2·y - 2) dy/dx = x^3 + 4·x^2 + 2
(2·y - 2) dy = (x^3 + 4·x^2 + 2) dx
∫ (2·y - 2) dy = ∫ (x^3 + 4·x^2 + 2) dx
y^2 - 2·y = 1/4·x^4 + 4/3·x^3 + 2·x + C
y^2 - 2·y + 1 = 1/4·x^4 + 4/3·x^3 + 2·x + 1 + C
Randwert: (-1)^2 - 2·(-1) + 1 = 1/4·0^4 + 4/3·0^3 + 2·0 + 1 + C --> C = 3
(y - 1)^2 = 1/4·x^4 + 4/3·x^3 + 2·x + 4
y - 1 = ± √(1/4·x^4 + 4/3·x^3 + 2·x + 4)
y = 1 ± √(1/4·x^4 + 4/3·x^3 + 2·x + 4)