Das ist doch im Prinzip das Gleiche, wie bei deinen andern Fragen heute.
Hier mal der Graph mit einer Sprungstelle bei x = 1
~plot~ (x^2-1)/(abs(x-1)) ~plot~
f(x)=(x2-1)/(/x-1/) / bedeutet Betragsstriche
Frage. In welchen Punkten sind die folgenden Funktionen nicht definiert und somit unstetig?
Definitionslücke und Unstetigkeitsstelle bei x = 1 (Division durch 0 ist nicht erlaubt)
Welche Art der Unstetigkeit liegt vor jeweils vor???
Gemäss Graph hat der Graph von f(x) bei x=1 eine Sprungstelle. Daher ist die Definitionslücke nicht stetig hebbar.
Falls du das noch rechnen sollst:
f(x)=(x2-1)/(/x-1/)
f(x) = ((x-1)(x+1))/ | x-1| Nun wohl am einfachsten weiter mit Fallunterscheidung wie ich das bei einer deiner Fragen von heute gemacht habe. ±(x-1) kann man kürzen, aber es ändert sich etwas am Vorzeichen links und rechts von x = 1. Darum dann der Sprung (solltest du vorrechnen).