Hallo Alex,
ich denke, Dein Ansatz ist sehr gut.
Ich würde die Vierfelder-Tafel so erstellen:
Taxi gelb Taxi blau
Aussage richtig 0,72 0,08 0,8
Aussage falsch 0,18 0,02 0,2
180/200 20/200 1
Die roten Werte waren gegeben, die Werte in der Tafel ergeben sich durch Multiplikation mit den Randwahrscheinlichkeiten (wegen der Unabhängigkeit der beiden Ereignisse).
Allerdings hat mich sowohl die Zeilenbeschriftung als auch die anschließende Auswertung vor Probleme gestellt, weshalb es auch voneinander abweichende Lösungen gab.
Übersichtlicher ist hier vielleicht ein Baumdiagramm wie folgendes:
Jetzt sieht man recht schön, dass die Wahrscheinlichkeit dafür, dass der Zeuge "blau" aussagt und das Taxi tatsächlich blau war, 0,08 beträgt, also 8%.
Aber die Wahrscheinlichkeit dafür, dass der Zeuge "blau" aussagt und das Taxi in Wirklichkeit gelb war, beträgt
0,18, also 18%.
Dann ist die Wahrscheinlichkeit, dass das Taxi tatsächlich blau war, wenn der Zeuge dies ausgesagt hat:
8% / (8% + 18%) = 8% / 26% = 4/13% ≈ 30,8%
Diese korrekte Antwort hat der Mathecoach schon gestern gegeben!
Besten Gruß