Der Kreis mit Radius r2 um den Mittelpunkt (-10, 0) und der Kreis mit r7 um den Mittelpunkt (0, 0) sowie deren Tangente beschreiben den oberen linken Rand der Fläche.
Ich möchte nun die beiden Punkte mit den x-Koordinaten x1 und x2 herausfinden, bei denen diese beiden Kreise dort in die gemeinsame Tangente übergehen.
Die Kreisgleichungen y = √ (r2 - x2) haben als erste Ableitung y' = -x / √ (r2 - x2) und diese Funktion kann bei der gemeinsamen Tangente für beide Kreise gleichgesetzt werden:
-x1 / √ (r22 - x12) = -x2 / √ (r72 - x22) wobei x2=x1+10
d.h. x1 = -10 r2 / (r2 + r7) und x2 ist 10 mehr.
Um das linke obere Viertel der Fläche zu erhalten, integriert man den Kreis mit r2 von x = -10 - r2 bis x1, dann die Tangente bis x2, dann den Kreis mit r7 bis x = 0. Das ganze mal vier, minus die drei Löcher, gibt den Flächeninhalt.