Wir haben folgendes: $$\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{x\rightarrow x_0}\frac{\sqrt{7x}-\sqrt{7x_0}}{x-x_0} \\ =\lim_{x\rightarrow x_0}\frac{\left(\sqrt{7x}-\sqrt{7x_0}\right)\cdot \left(\sqrt{7x}+\sqrt{7x_0}\right)}{\left(x-x_0\right)\cdot \left(\sqrt{7x}+\sqrt{7x_0}\right)} \\ =\lim_{x\rightarrow x_0}\frac{\left(\sqrt{7x}\right)^2-\left(\sqrt{7x_0}\right)^2}{\left(x-x_0\right)\cdot \left(\sqrt{7x}+\sqrt{7x_0}\right)} \\ =\lim_{x\rightarrow x_0}\frac{7x-7x_0}{\left(x-x_0\right)\cdot \left(\sqrt{7x}+\sqrt{7x_0}\right)} \\ =\lim_{x\rightarrow x_0}\frac{7\cdot \left(x-x_0\right)}{\left(x-x_0\right)\cdot \left(\sqrt{7x}+\sqrt{7x_0}\right)} \\ =\lim_{x\rightarrow x_0}\frac{7}{ \sqrt{7x}+\sqrt{7x_0}} \\ =\frac{7}{ \sqrt{7x_0}+\sqrt{7x_0}} \\ =\frac{7}{ 2\sqrt{7x_0}}$$