könntet ihr mir sagen ob ich richtig vorgehe?
y'' + 2y' + 5y = 10x^2
y(0) = -1, y'(0) = 0
homogene Lösung:
x^2+2x+5 = 0 => x_1/2 = -1 +- 2i
y_h = e^{-x} [Asin(2x) + Bcos(2x)]
_____
part. Lösung:
y_p = Cx^2 + Dx + E
y'_p = 2Cx + D
y''_p = 2C
10x^2 = 2C + 2*[2Cx + D] + 5[Cx^2 + Dx + E]
==> C = 2, D = -8/5, E = -12/25
==> y_p = 2x^2 - 8/5x - 12/25
y_A = y_h + y_p = e^{-x} [Asin(2x) + Bcos(2x)] + 2x^2 - 8/5x - 12/25
y'_A = e^{-x} (sin(2x)[-A-2B]+cos(2x)[-B+2A]) + 4x -8/5
y'_A(0) = 0 = -B+2A - 8/5 ==> A = 8/5 + B
y_A(0) = -1 = B-12/25 ==> B = 37/25
8/5 + B = 8/5 + 37/25 = A = 77/25
y_AWP = e^{-x} [77/25 sin(2x) + 37/25 cos(2x)] + 2x^2 - 8/5x - 12/25
MFG und ein schönes rest WE