Hallo Rokko! :-)
a)
fx = yx^{y-1}
fy = x^y•log(x)
fx(1,1) = 1•1^{1-1} = 1
fy(1,1) = 1^1•log(1) = 1•0 = 0
grad(f) = (yx^{y-1},x^y•log(x))
grad(f)(1,1) = (fx(1,1), fy(1,1)) = (1,0)
v = (2,3) normiert: ṽ = (2/√13, 3/√13)
D_ṽf(a) = grad(f)(1,1)•ṽ = (1,0)•(2/√13, 3/√13) = 2/√13
b)
grad(f)(1,1) = (1,0)
c)
f(x,y) = x^y
fx = yx^{y-1}
fxx = y^2•x^{y-2} - y•x^{y-2}
fxy = x^{y-1} + y•x^{y-1}•log(x)
fy = x^y•log(x)
fyy = x^y•log^2(x)
fyx = fxy
----------------------------------
f(1,1) = 1
fx(1,1) = 1
fxx(1,1) = 0
fxy(1,1) = 1
fy(1,1) = 0
fyy(1,1) = 0
----------------------------------
T(1,1),2(x,y) = f(1,1) + fx(1,1)•(x-1) + fy(1,1)•(y-1) + 1/2•fxx(1,1)•(x-1)^2 + fxy(1,1)•(x-1)•(y-1) + 1/2•fyy(1,1)•(y-1)^2 =
1 + 1•(x-1) + 0•(y-1) + 1/2•0•(x-1)^2 + 1•(x-1)•(y-1) + 0•(1,1)•(y-1)^2 = 1 + (x-1) + (x-1)•(y-1)
Beste Grüße
gorgar