Angenommen in einer Urne befinden sich θ ∈ ℕ Kugeln, die mit den Zahlen 1 bis θ beschriftet sind. Es werden n Kugeln mit Zurücklegen gezogen. Für i ∈ {1,...,n} sei X_i die Nummer der i-ten gezogenen Kugel.
Ich habe jetzt bereits den Likelihood Schätzer bestimmt als ^θ(x)= inf{θ: 1_{1,...,θ} (max x_i) = 1} = max_(1≤i≤n) x_i
Wie prüfe ich jetzt die Erwartungstreue und Konsistenz.