f(x,y) = (x^3 - 3·x)/(1 + y^2)
f'(x,y) = [3·(x^2 - 1)/(y^2 + 1), 2·x·y·(3 - x^2)/(y^2 + 1)^2] = [0, 0] --> (x = -1 ∧ y = 0) ∨ (x = 1 ∧ y = 0)
f''(x,y) = [6·x/(y^2 + 1), 6·y·(1 - x^2)/(y^2 + 1)^2; 6·y·(1 - x^2)/(y^2 + 1)^2, 2·x·(x^2 - 3)·(3·y^2 - 1)/(y^2 + 1)^3]
f''(-1, 0) = [-6, 0; 0, -4] --> Maximum
f''(1, 0) = [6, 0; 0, 4] --> Minimum