$$y'-y^2sin(x)=0\qquad\qquad;y(0)=\frac{1}{4}\\ y'=y^2sin(x)\\ y'=\frac{dy}{dx}\\ \frac{dy}{dx}=y^2sin(x)\qquad |\cdot dx\\ dy=y^2sin(x)\cdot dx\quad |:y^2\\ \int\frac{dy}{y^2}=\int sin(x)\space dx\\ -\frac{1}{y}=-cos(x)+c_1\qquad |\cdot (-1)\\ +\frac{1}{y}=cos(x)-c_1\\ y=\frac{1}{cos(x)-c_1}\\ \text{AWB:}\qquad y(0)=\frac{1}{4}\\ ⇒ \frac{1}{4}=\frac{1}{cos(0)-c_1}\\ ⇒ 1-c_1=4 ⇒c_1=-3\\ ⇒\text{Lösung:}y=\frac{1}{cos(x)+3}$$