links steht die Matrix, die ich in die \(3\times3-\)Einheitsmatrix umforme. Rechts steht die Einheitsmatrix, auf welche die Operationen von links angewendet werden.
Initialisierung:
\(\left(\begin{matrix}1&a&b\\0&1&c\\0&0&-1\end{matrix}\right) \mid \left(\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}\right)\)
Letzte Zeile mal \(-1\):
$$\left(\begin{matrix}1&a&b\\0&1&c\\0&0&1\end{matrix}\right) \mid \left(\begin{matrix}1&0&0\\0&1&0\\0&0&-1\end{matrix}\right)$$
\(1.\) Zeile minus \(a\) mal die zweite Zeile:
$$\left(\begin{matrix}1&0&b-ca\\0&1&c\\0&0&1\end{matrix}\right) \mid \left(\begin{matrix}1&-a&0\\0&1&0\\0&0&-1\end{matrix}\right)$$
\(1.\) Zeile minus (\(b-ca\)) mal die dritte Zeile:
$$\left(\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}\right) \mid \left(\begin{matrix}1&-a&b-ca\\0&1&c\\0&0&-1\end{matrix}\right)$$
Das Ergebnis stimmt, wie Du hier siehst: https://www.wolframalpha.com/input/?i=inverse+%7B%7B1,a,b%7D,%7B0,1,c%7D,%7B0,0,-1%7D%7D Du kannst es auch überprüfen, indem Du die beiden Matrizen multiplizierst. Erhältst Du die Einheitsmatrix, so ist das Ergebnis richtig.
André