Hallo HI,
fa(x) = -(1/a) ·( x2 - (a+2)·x + ( a+1) ) ; a>0
a)
fa "(x) = - (2·x - a - 2) / a = 0 ⇔ x = (a + 2) / 2
fa "(x) = -2 / a < 0 → Maximalstelle
x = (a + 2) / 2 in die Funktionsgleichung einsetzen.
fa ( (a + 2) / 2 ) = -(1/a) · ( 1/4 · (a+2)2 - 1/2 (a+2)2 + a + 1 )
= -(1/a) · ( -1/4 * (a+2)2 + a + 1 = -(1/a) · ( -1/4 · (a2 + 4a + 4) + a + 1 )
= -(1/a) · ( -1/4 a2 - a - 1 + a + 1) = a/4
→ H( (a + 2)/2 | a/4 )
b)
-(1/a) ·( x2 - (a+2)·x + ( a+1) ) = 0 | * (-a)
x2 - (a+2)·x + ( a+1) = 0
x2 + px + q = 0
pq-Formel: p = - (a+2) ; q = a+1
x1,2 = - p/2 ± \(\sqrt{(p/2)^2 - q}\)
= 1/2 * (a + 2) ± √( 1/4 (a+2)2 - a -1 ) = 1/2 * (a + 2) ± √( 1/4 a2 + a + 1 - a - 1)
= a/2 + 1 ± a/2
x1 = a + 1 ; x2 = 1
Gruß Wolfgang