0 Daumen
1,8k Aufrufe


O(r)=2πr2 +2πr*(200/πr2 )

also 200/πr soll ein Bruch sein


Wie leite ich das jetzt ab? 
Würde mich über hilfe freuen :)

Avatar von

3 Antworten

0 Daumen

Der Reihe nach:

Also erster Summand abgeleitet ist:

$$ 2\pi { r }^{ 2 }->4\pi r $$

Zweiter Summand:

$$ 2\pi r->2\pi  $$

Dritter Summand:

$$ \frac { 200 }{ \pi { r }^{ 2 } } ->-\frac { 400 }{ \pi { r }^{ 3 } }  $$


Wie kommt man jetzt darauf?

Antwort:

Nimm den Faktor vorweg:

$$ \frac { 200 }{ \pi { r }^{ 2 } } ->-\frac { 200 }{ \pi  } *\frac { 1 }{ { r }^{ 2 } }  $$

Bei diesem 1/r^2 sollte jetzt etwas dämmern...

1/r^2 = r^-2

r^-2 können wir ableiten indem wir die Potenzregel nutzen

$$ \frac { 1 }{ { r }^{ 2 } } ={ r }^{ -2 }->-2*{ r }^{ -3 } $$

das Schreiben wir jetzt erstmal um:

$$ \frac { 1 }{ { r }^{ 2 } } ={ r }^{ -2 }->-2*{ r }^{ -3 }=\frac { -2 }{ { r }^{ 3 } }   $$

Ich ziehe jetzt den Faktor davor und verrechne diesen:

$$ \frac { 200\quad (-2) }{ { \pi r }^{ 3 } } =\frac { -400 }{ { \pi r }^{ 3 } }  $$


Die verwendete Regel von der ich sprach kennen wir ja schon von sowas wie x^2, das geht nämlich auch mit x^-2 sie lautet:

$$ { f(x)\quad =\quad x }^{ n }\quad ->\quad f'(x)\quad =\quad n*{ x }^{ n-1 } $$

Das angewendet auf dieses r^-2 ist:

$$ f(x)={ x }^{ n },\quad f'(x)\quad =\quad n*{ x }^{ n-1 },\quad { f(x)=r }^{ -2 }->f'(x)=-2{ r }^{ -3 } $$

Avatar von 3,1 k

Ich meinte, wie genau muss ich mit dem Bruch umgehen? 
Kannst du mir die Abgeleitete Funktion eventuell einmal hier rein schreiben?

Erklärung kommt sofort

 
Ich habe es jetzt auch gelöst und meine Ableitung war richtig, nur der Taschenrechner konnte die Gleichung wenn ich sie gleich null setzte mit dem befehl polyroots nicht lösen deswegen dachte ich es seie falsch.
Ich habe es jetzt per Hand gelöst und die Lösung ist richtig

Danke !

Kein Problem!

Ein dritter Summand ist gar nicht vorhanden.

Danke, Rechnung kommt:

$$ 2\pi r*\frac { 200 }{ \pi { r }^{ 2 } } =\frac { 400 }{ x }  $$

$$ \frac { 400 }{ x } ->\frac { -400 }{ { x }^{ 2 } }  $$

Entschuldigung bitte, ich habe da unerklärlicherweise einen dritten Summanden gesehen. Was ich aber gesagt habe gilt dennoch!

Auf diesen Bruch 400/x kann man dann die besagte Regel anwenden!

Danke dir Gast!

0 Daumen

Nenner ableiten -> r^2 wird zu 2r

Zähler ableiten 200 wird zu 0

Du teilst 0 durch was anderes und es ergibt sich 0

Avatar von
0 Daumen

O ( r ) = 2*π*r2 + 2*π*r * 200 / (π*r2)
O ( r ) = 2*π*r2 + 2 * 200 / r
O ( r ) = 2*π*r2 + 400 / r
Quotientenregel oder
O ( r ) = 2*π*r2 + 400 * r ^{-1}
O ´( r ) = 4 * π * r + (-1) * 400 * r ^{-1-1}
O ´( r ) = 4 * π * r - 400 * r ^{-2}
O ´( r ) = 4 * π * r - 400 / r ^{2}

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community