Hi,
also ja, das ist richtig. Wir haben eine hebbare Definitionslücke. Diese ist hebbar, da sich die Problemstelle im Nenner ja wegkürzt. Da wir aber immer f(x) anschauen, ist x=2 dennoch verboten. Wenn man aber die entsprechende Erlaubnis hat, kann man das nun stetig ergänzen. Dies ist in der Tat nicht bei y=0, also auf der x-Achse, sondern man kann den Punkt P(2|4) ergänzen.
Denn
$$\frac{x^2-4}{x-2} = x+2$$
und für x=2 -> y=4
Güße