Zu zeigen
n! ≥ n^3 - 2·n^2
Induktionsanfang n = 1, 2, 5
n = 1
1! ≥ 1^3 - 2·1^2 = -1 --> wahr
n = 2
2! ≥ 2^3 - 2·2^2 = 0 --> wahr
n = 5
5! ≥ 5^3 - 2·5^2 = 75 --> wahr
Induktionsschritt n --> n + 1
(n + 1)! ≥ (n + 1)^3 - 2·(n + 1)^2
(n + 1)·n! ≥ (n + 1)^3 - 2·(n + 1)^2
n! ≥ (n + 1)^2 - 2·(n + 1)^1
n! ≥ n^2 - 1
n^3 - 2·n^2 ≥ n^2 - 1
n^3 - 3·n^2 + 1 ≥ 0
n^3 - 3·n^2 ≥ 0
n^2·(n - 3) ≥ 0 --> wahr