Für jedes k ist die Funktionenschar (x3 +3kx2 -4k3 ) / x gegeben.
a) Zeigen Sie ,dass der Graph einer jeden Funktion der Schar die x-Achse an der Stelle x= -2k berührt, und bestimmen Sie alle weiteren Nullstellen.
Also durch quotientenregel und einsetzung der ersten Ableitung =0 kommt man auf -2k .Somit ist der erste Teil gemacht und bewiesen
(ach ja weiß jemand wie man die Nullstellen ohne Taschenrechner herausbekommt? Ich hab hier einfach die Werte eingesetzt und -2 ist rausgekommen. dann hab ich gedacht es muss noch ein k dabei sein also -2k. Kann man die Nullstellen ohne TR berechnen)
Aber da steht noch "Bestimmen Sie alle weiteren Nullstellen". Aber es gibt doch nur eine Nullstelle nähmlich -2k .Wie geht man hier vor?