Hallo gast2345, Beweis Injektivität:
Die Primfaktorenzerlegung ist eindeutig (I):
180 = 22 * 32 * 5
22 : 2k
32 * 5 : Jedes Produkt aus ungeraden Zahlen ist wieder ungerade -> 2 l + 1
Ist jede ungerade Zahl 2 l + 1 eindeutig in Primzahlen zerlegbar? Ja, siehe (I). Damit ist f injektiv. Es gibt für eine Zahl wie z. B. 180 keine zwei verschiedenen Paare (k, l), mit denen man diese Zahl bilden kann.
Bleibt Surjektivität zu zeigen.