0 Daumen
1,5k Aufrufe

Meine Aufgabe lautet wie folgt:

Betrachtet wird nun die Gruppe Z15* der Einheiten von Z15 bzgl. der Multiplikation mod 15.

Ist diese Gruppe zyklisch? Ist Z15* zu (Z8;+) isomorph?

Reicht es nachzuweisen das Z15 bzgl der Multiplikation mod 15 erzeugende Elemente besitzt?

Und wie weist man nach das Z15* zu anderen Gruppen isomorph ist?

Avatar von

1 Antwort

+1 Daumen

Jedes Element von ℤ15* erzeugt eine echte Untergruppe. Die Gruppe ist also nicht zyklisch.

Avatar von

Bleibt die Frage, ob (Z*15) zu (Z8,+) isomorph ist? 

(Z8,+) ist zyklisch. Kann ich dann daraus schlussfolgern, dass die Gruppen nicht isomorph sind?

 

danke, aber da kommen wir auch gerade nicht weiter ... ;-)

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community