Die Aufgabe ist überbestimmt. D.h. sie enthält mehr Angaben, als zur Lösung notwendig sind. Man könnte entweder fragen: Wie groß muss \(a\) sein, damit \(f(-1,2)=-1,5576\) ist? oder man fragt: wie groß muss \(a\) sein, damit der Wendepunkt bei \(x=-1,2\) liegt.
Ich nehme mal letzteres als die eigentliche Aufgabe. Die Bedingung für den Wendepunkt ist, dass die zweite Ableitung an dieser Stelle =0 sein muss. Ableitungen bildet man hier mit der Produktregel.
$$f(x) = (x-2) e^{\frac{a}{2}x}$$
Ist \(u(x)=x-2\) und \(v(x)= e^{\frac{a}{2}x}\), so ist \(u'(x)=1\) und \(v'(x)=\frac{a}{2} e^{\frac{a}{2}x}\). Letzteres habe ich nach der Kettenregel abgeleitet. also ist
$$f'(x) = 1 \cdot e^{\frac{a}{2}x} + (x-2) \cdot \frac{a}{2} e^{\frac{a}{2}x} = (\frac{a}{2}x + (1-a))e^{\frac{a}{2}x}$$
nochmal Ableiten - nach der Produkt- und der Kettenregel - gibt:
$$\begin{aligned} f''(x) &= \frac{a}{2} e^{\frac{a}{2}x} + (\frac{a}{2}x + (1-a)) \frac{a}{2} e^{\frac{a}{2}x} \\ &= \frac{a}{2} (\frac{a}{2}x + (2-a)) e^{\frac{a}{2}x} \end{aligned}$$
Dieser Ausdruck soll für \(f''(-1,2)=0\) sein. Das ist z.B. der Fall, wenn \(a=0\) ist, aber dann ist der Funktionswert nicht \(-1,5576\) (so gesehen, war die Aufgabenstellung nicht so ganz überbestimmt). Da \(e^{\frac{a}{2}x}\) nie 0 werden kann bleibt nur noch der Faktor
$$\frac{a}{2}(x=-1,2) + (2-a)=0$$
Ein paar Umformungen
$$-\frac{3}{5} a + 2 -a = 0$$
$$2 = \frac85 a$$
$$a = \frac54 = 1,25$$
Jetzt ist auch \(f(x=-1,2) \approx -1,5116\). ... und das ganze nochmal im Bild:
~plot~ (x-2)*exp(0.625x);{-1.2|-1.5116} ~plot~
Gruß Werner